If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 0.0000987t2 + -0.0122t + 0.0613 = 0 Reorder the terms: 0.0613 + -0.0122t + 0.0000987t2 = 0 Solving 0.0613 + -0.0122t + 0.0000987t2 = 0 Solving for variable 't'. Begin completing the square. Divide all terms by 0.0000987 the coefficient of the squared term: Divide each side by '0.0000987'. 621.0739615 + -123.6068896t + t2 = 0 Move the constant term to the right: Add '-621.0739615' to each side of the equation. 621.0739615 + -123.6068896t + -621.0739615 + t2 = 0 + -621.0739615 Reorder the terms: 621.0739615 + -621.0739615 + -123.6068896t + t2 = 0 + -621.0739615 Combine like terms: 621.0739615 + -621.0739615 = 0.0000000 0.0000000 + -123.6068896t + t2 = 0 + -621.0739615 -123.6068896t + t2 = 0 + -621.0739615 Combine like terms: 0 + -621.0739615 = -621.0739615 -123.6068896t + t2 = -621.0739615 The t term is -123.6068896t. Take half its coefficient (-61.8034448). Square it (3819.665789) and add it to both sides. Add '3819.665789' to each side of the equation. -123.6068896t + 3819.665789 + t2 = -621.0739615 + 3819.665789 Reorder the terms: 3819.665789 + -123.6068896t + t2 = -621.0739615 + 3819.665789 Combine like terms: -621.0739615 + 3819.665789 = 3198.5918275 3819.665789 + -123.6068896t + t2 = 3198.5918275 Factor a perfect square on the left side: (t + -61.8034448)(t + -61.8034448) = 3198.5918275 Calculate the square root of the right side: 56.556094521 Break this problem into two subproblems by setting (t + -61.8034448) equal to 56.556094521 and -56.556094521.Subproblem 1
t + -61.8034448 = 56.556094521 Simplifying t + -61.8034448 = 56.556094521 Reorder the terms: -61.8034448 + t = 56.556094521 Solving -61.8034448 + t = 56.556094521 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '61.8034448' to each side of the equation. -61.8034448 + 61.8034448 + t = 56.556094521 + 61.8034448 Combine like terms: -61.8034448 + 61.8034448 = 0.0000000 0.0000000 + t = 56.556094521 + 61.8034448 t = 56.556094521 + 61.8034448 Combine like terms: 56.556094521 + 61.8034448 = 118.359539321 t = 118.359539321 Simplifying t = 118.359539321Subproblem 2
t + -61.8034448 = -56.556094521 Simplifying t + -61.8034448 = -56.556094521 Reorder the terms: -61.8034448 + t = -56.556094521 Solving -61.8034448 + t = -56.556094521 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '61.8034448' to each side of the equation. -61.8034448 + 61.8034448 + t = -56.556094521 + 61.8034448 Combine like terms: -61.8034448 + 61.8034448 = 0.0000000 0.0000000 + t = -56.556094521 + 61.8034448 t = -56.556094521 + 61.8034448 Combine like terms: -56.556094521 + 61.8034448 = 5.247350279 t = 5.247350279 Simplifying t = 5.247350279Solution
The solution to the problem is based on the solutions from the subproblems. t = {118.359539321, 5.247350279}
| x^2+18x+81=30 | | 10.3x/5=23 | | 2=12x-y | | -5/3x=-25/21 | | 0=-x^2-2x+30 | | 6y-27=105 | | 4(x+11)=5x | | 2(3m-5)-4(m-1)= | | 5(3y+7)-4y=13 | | 15-.5x=21 | | 4+5k(4+3k)= | | 0=sin(x)+0.5*cos(2x) | | (5/7)*(5/7)*(5/7)*(5/7)*(5/7)*(5/7) | | A-0.1A=32450 | | 14x-5x=36 | | (3/7)*(3/7)*(3/7)*(3/7)*(3/7)*(3/7) | | .5x+22=20 | | 5(3y+7)-4=13 | | 4k+5(3+2k)= | | 3x-80=x | | (5/7)*(5/7)*(5/7)*(5/7)*(5/7) | | A-(10A/100)=32450 | | 4x-3+2x=5x+9 | | 6n+24=-36 | | A(10A/100)=32450 | | 12x+3=11x | | 6n-20=34 | | (5/5)*(5/5)*(5/5)*(5/5)*(5/5) | | 8(90-8t)-9t=-10 | | P*33=3 | | A-(Ax10/100)=32350 | | 7n+20=90 |